Contamination on AMS Sample Targets by Modern Carbon is Inevitable

Author:

Paul Dipayan,Been Henk A,Aerts-Bijma Anita Th,Meijer Harro A J

Abstract

AbstractAccelerator mass spectrometry (AMS) measurements of the radiocarbon content in very old samples are often challenging and carry large relative uncertainties due to possible contaminations acquired during the preparation and storage steps. In case of such old samples, the natural surrounding levels of 14C from gases in the atmosphere, which may well be the source of contamination among others, are 2–3 orders of magnitude higher than the samples themselves. Hence, serious efforts are taken during the preparation steps to have the samples pristine until measurements are performed. As samples often have to be temporarily stored until AMS measurements can be performed, storage conditions also become extremely crucial. Here we describe an assessment of this process of contamination in background AMS samples. Samples, both as pressed graphite (on AMS targets) and graphite powder, were stored in various storage conditions (CO2-spiked air) to investigate the extent of contamination. The experiments clearly show that the pressed targets are more vulnerable to contamination than the unpressed graphite. Experiments conducted with enriched CO2-spiked laboratory air also reveal that the contaminating carbon is not only limited to the target surface but also penetrates into the matrix. A combination of measurements on understanding the chemical nature of the graphitization product, combined with long-available knowledge on “adventitious carbon” from the surface science community, brought us to the conclusion that contamination is to a certain extent inevitable. However, it can be minimized, and should be dealt with by sputter-cleaning the samples individually before the actual measurement.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3