A theory for Langmuir solitons

Author:

Rao N. Nagesha,Varma Ram K.

Abstract

A systematic and self-consistent analysis of the problem of Langmuir solitons in the entire range of Mach numbers (0 < M < 1) has been presented. A coupled set of nonlinear equations for the amplitude of the modulated, high-frequency Langmuir waves and the associated low-frequency ion waves is derived without using the charge neutrality condition or any a priori ordering schemes. A technique has been developed for obtaining analytic solutions of these equations where any arbitrary degree of ion nonlinearity consistent with the nonlinearity retained in the Langmuir field can be taken into account self-consistently. A class of solutions with non-zero Langmuir field intensity at the centre (ξ = 0) are found for intermediate values of the Mach number. Using these solutions, a smooth transition from single-hump solitons to the double-hump solitons with respect to the Mach number has been established through the definitions of critical and cut-off Mach numbers. Further, under appropriate limiting conditions, various solutions discussed by other authors are obtained. Sagdeev potential analyses of the solutions for the Langmuir field as well as the ion field are carried out. These analyses confirm the transition from single-hump solitons to the double-hump solitons with respect to the Mach number. The existence of many-hump solitons for higher-order nonlinearities in the low-frequency ion wave potential has been conjectured. The method of solution developed here can be applied to similar equations in other fields.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3