Interplay between Kelvin–Helmholtz and lower-hybrid drift instabilities

Author:

Dargent JérémyORCID,Lavorenti Federico,Califano FrancescoORCID,Henri Pierre,Pucci Francesco,Cerri Silvio S.

Abstract

Boundary layers in space and astrophysical plasmas are the location of complex dynamics where different mechanisms coexist and compete, eventually leading to plasma mixing. In this work, we present fully kinetic particle-in-cell simulations of different boundary layers characterized by the following main ingredients: a velocity shear, a density gradient and a magnetic gradient localized at the same position. In particular, the presence of a density gradient drives the development of the lower-hybrid drift instability (LHDI), which competes with the Kelvin–Helmholtz instability (KHI) in the development of the boundary layer. Depending on the density gradient, the LHDI can even dominate the dynamics of the layer. Because these two instabilities grow on different spatial and temporal scales, when the LHDI develops faster than the KHI an inverse cascade is generated, at least in two dimensions. This inverse cascade, starting at the LHDI kinetic scales, generates structures at scale lengths at which the KHI would typically develop. When that is the case, those structures can suppress the KHI itself because they significantly affect the underlying velocity shear gradient. We conclude that, depending on the density gradient, the velocity jump and the width of the boundary layer, the LHDI in its nonlinear phase can become the primary instability for plasma mixing. These numerical simulations show that the LHDI is likely to be a dominant process at the magnetopause of Mercury. These results are expected to be of direct impact to the interpretation of the forthcoming BepiColombo observations.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3