A gyrokinetic model for the plasma periphery of tokamak devices

Author:

Frei B. J.ORCID,Jorge R.ORCID,Ricci P.

Abstract

A gyrokinetic model is presented that can properly describe large and small amplitude electromagnetic fluctuations occurring on scale lengths ranging from the electron Larmor radius to the equilibrium perpendicular pressure gradient scale length, and the arbitrarily large deviations from thermal equilibrium that are present in the plasma periphery of tokamak devices. The formulation of the gyrokinetic model is based on a second-order accurate description of the single charged particle dynamics, derived from Lie perturbation theory, where the fast particle gyromotion is decoupled from the slow drifts assuming that the ratio of the ion sound Larmor radius to the perpendicular equilibrium pressure scale length is small. The collective behaviour of the plasma is obtained by a gyrokinetic Boltzmann equation that describes the evolution of the gyroaveraged distribution function. The collisional effects are included by a nonlinear gyrokinetic Dougherty collision operator. The gyrokinetic model is then developed into a set of coupled fluid equations referred to as the gyrokinetic moment hierarchy. To obtain this hierarchy, the gyroaveraged distribution function is expanded onto a Hermite–Laguerre velocity-space polynomial basis. Then, the gyrokinetic equation is projected onto the same basis yielding the spatial and temporal evolution of the Hermite–Laguerre expansion coefficients. A closed set of fluid equations for the lowest-order coefficients is presented. The Hermite–Laguerre projection is performed accurately at arbitrary perpendicular wavenumber values. Finally, the self-consistent evolution of the electromagnetic fields is described by a set of gyrokinetic Maxwell equations derived from a variational principle where the velocity integrals are explicitly evaluated.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3