Stability of force-free magnetic fields versus magnetic pitch

Author:

HU Y. Q.,LI L.

Abstract

Starting from the one-dimensional energy integral and related stability theorems given by Newcomb [Ann. Phys (NY)10, 232 (1960)] for a linear pinch system, this paper analyses the stability of one-dimensional force-free magnetic fields in cylindrical coordinates (r, θ, z). It is found that the stability of the force-free field is closely related to the radial distribution of the pitch of the field lines: h(r) = 2πrBz/Bθ. The following three types of force-free fields are proved to be unstable: (i) force-free fields with a uniform pitch; (ii) force-free fields with a pitch that increases in magnitude with r in the neighbourhood of r = 0(d[mid ]h[mid ]/dr > 0); and (iii) force-free fields for which (dh/dr)r=0 = 0, Bθ α rm in the neighbourhood of r = 0, and (h d2h/dr2)r=0 > −128π2/(2m+4)2. On the other hand, the stability does not have a definite relation to the maximum of the force-free factor α defined by [dtri ]×B = αB. Examples will be given to illustrate that force-free fields with an infinite force-free factor at the boundary are stable, whereas those with a force-free factor that is finite and smaller than the lowest eigenvalue of linear force-free field solutions in the domain of interest are unstable. The latter disproves the sufficient criterion for stability of nonlinear force-free magnetic fields given by Krüger [J. Plasma Phys.15, 15 (1976)] that a nonlinear force-free field is stable if the maximum absolute value of the force-free factor is smaller than the lowest eigenvalue of linear force-free field solutions in the domain of interest.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3