Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions

Author:

HORA HEINRICH,AZECHI H.,KITAGAWA Y.,MIMA K.,MURAKAMI M.,NAKAI S.,NISHIHARA K.,TAKABE H.,YAMANAKA C.,YAMANAKA M.,YAMANAKA T.

Abstract

The recent high core gains of 29% in laser fusion experiments at the LLE Rochester are evaluated and compared with related earlier measurements where surprisingly the self-similarity model for volume compression provides a common description. This is a proof that the isentropic conditions of stagnation-free compression were mostly fulfilled at the optimized experimental gains, in contrast to highly entropy-producing shock and central spark conditions. Some projections are given of how these results may be generalized to volume ignition for the parameters of the NIF (National Ignition Facility). The proof of stagnation-free volume compression for the best laser fusion gains indicates the advantages of volume ignition, which not only is ‘robust’ and simply follows the natural adiabatic compression, but also is much less sensitive to instabilities and mixing. However, its essential advantage is that it is free from symmetry problems – in contrast to spark ignition, with its spherical detonation front.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3