Thermal relaxation of light dilute particles in a heat bath: a model problem

Author:

Garrett A. J. M.

Abstract

The relaxation of a very dilute test particle species undergoing elastic collisions with a distinct, thermally distributed second particle species is considered. The Boltzmann equation is set up for the component of the test particle distribution function isotropic in velocity space; external forces and spatial dependence are ignored. For small test particle: heat-bath particle mass ratio, collisions are adequately described by a differential operator that is second-or der with respect to collision speed, which depends on the functional form of the collision frequency in terms of speed. The evolution equation is transformed to the form of the time-dependent Schrödinger equation, and the equivalent Schrödinger potential evaluated in terms of the collision frequency-speed relation. The relaxation problem may be solved by specifying the Green's propagator, describing the relaxation of an initial monoenergetic distribution. The case of constant Schrödinger potential is studied: the corresponding form of the collision frequency is found by an inversion process, and the evolution equation studied in Schrödinger form. The transformed speed variable has a finite range as particle speeds vary from 0 to ∞, and it is necessary to specify that particles are not lost at the finite values corresponding to small and large speeds. The Green's propagator is continued beyond this physical range, rather as in the ‘method of images’ of electrostatics. The particle conservation requirements induce a Laplace transform problem for the initial value of the Green's propagator, which is reduced to a polynomial recurrence relation and solved by finding the generating function. The Green's propagator is itself propagated forward from its initial value by a ‘primitive’ propagator which is the solution of the problem for initial delta function not only in the physical range, but anywhere in the space of the transformed variable. This primitive propagator is readily found, and the propagation quadrature performed to yield the true propagator in terms of parabolic cylinder functions. A check is made with a special case, for which relaxation to thermal form is explicitly demonstrated. Differences and similarities between this analysis and those corresponding to more general collision frequencies and potentials are considered.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3