Nonlinear ion–acoustic waves in an inhomogeneous plasma with non-thermal distribution of electrons

Author:

Singh S. V.

Abstract

In the Earth's magnetosphere, the boundary layer regions are the sources for inhomogeneous plasmas and are natural laboratories to study wave phenomena. In these regions, particles distributions also differ from Maxwellian and are found to be non-thermal. Therefore, amplitude of the waves propagating through these regions can vary differently compared to the homogeneous plasmas. In this study, propagation of ion–acoustic waves (IAWs) in an inhomogeneous, warm electron-ion plasma is examined. The electrons are considered to be having non-thermal Cairn's type distribution and ions follow the fluid dynamical equations. Further, inhomogeneity is assumed in equilibrium density of the electrons and ions. The evolution of the nonlinear IAWs is governed by the Korteweg–de Vries (KdV) equation with variable coefficients. Analytical solution of the KdV equation shows that for a cold ion plasma and non-thermal electrons, the amplitude and the width of the nonlinear IAWs decreases and increases, respectively with the inclusion of the non-thermal distribution of electrons. It is interesting to note that nonlinear IAWs in this model can not propagate for whole range of non-thermal parameter, α. The novel result of this study is that for nonlinear IAWs to propagate in the inhomogeneous two component plasma with ions and non-thermal electrons, the non-thermal parameter, α ⩽ 0.155. Results from our study may have impact on the propagation of the IAWs in the boundary layer regions of the Earth's magnetosphere where density inhomogeneities are appreciable.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3