Benchmarking magnetised three-wave coupling for laser backscattering: analytic solutions and kinetic simulations

Author:

Shi YuanORCID

Abstract

Understanding magnetised laser–plasma interactions is important for controlling magneto-inertial fusion experiments and developing magnetically assisted radiation and particle sources. For nanosecond pulses at non-relativistic intensities, interactions are dominated by coherent three-wave interactions, whose nonlinear coupling coefficients became known only recently when waves propagate at oblique angles with the magnetic field. In this paper, backscattering coupling coefficients predicted by warm-fluid theory are benchmarked using particle-in-cell simulations in one spatial dimension, and excellent agreements are found for a wide range of plasma temperatures, magnetic field strengths and laser propagation angles, when the interactions are mediated by electron-dominant hybrid waves. Systematic comparisons between theory and simulations are made possible by a rigorous protocol. On the theory side, the initial boundary value problem of linearised three-wave equations is solved, and the transient-time solutions allow the effects of growth and damping to be distinguished. On the simulation side, parameters are carefully chosen and calibration runs are performed to ensure that comparisons are well controlled. Fitting simulation data to analytical solutions yields numerical growth rates that match theory predictions within error bars. Although warm-fluid theory is found to be valid for a wide parameter range, genuine kinetic effects have also been observed.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3