An approximate analytic solution to the coupled problems of coronal heating and solar-wind acceleration

Author:

Chandran Benjamin D. G.ORCID

Abstract

Between the base of the solar corona at $r=r_\textrm {b}$ and the Alfvén critical point at $r=r_\textrm {A}$ , where $r$ is heliocentric distance, the solar-wind density decreases by a factor $ \mathop > \limits_\sim 10^5$ , but the plasma temperature varies by a factor of only a few. In this paper, I show that such quasi-isothermal evolution out to $r=r_\textrm {A}$ is a generic property of outflows powered by reflection-driven Alfvén-wave (AW) turbulence, in which outward-propagating AWs partially reflect, and counter-propagating AWs interact to produce a cascade of fluctuation energy to small scales, which leads to turbulent heating. Approximating the sub-Alfvénic region as isothermal, I first present a brief, simplified calculation showing that in a solar or stellar wind powered by AW turbulence with minimal conductive losses, $\dot {M} \simeq P_\textrm {AW}(r_\textrm {b})/v_\textrm {esc}^2$ , $U_{\infty } \simeq v_\textrm {esc}$ , and $T\simeq m_\textrm {p} v_\textrm {esc}^2/[8 k_\textrm {B} \ln (v_\textrm {esc}/\delta v_\textrm {b})]$ , where $\dot {M}$ is the mass outflow rate, $U_{\infty }$ is the asymptotic wind speed, $T$ is the coronal temperature, $v_\textrm {esc}$ is the escape velocity of the Sun, $\delta v_\textrm {b}$ is the fluctuating velocity at $r_\textrm {b}$ , $P_\textrm {AW}$ is the power carried by outward-propagating AWs, $k_\textrm {B}$ is the Boltzmann constant, and $m_\textrm {p}$ is the proton mass. I then develop a more detailed model of the transition region, corona, and solar wind that accounts for the heat flux $q_\textrm {b}$ from the coronal base into the transition region and momentum deposition by AWs. I solve analytically for $q_\textrm {b}$ by balancing conductive heating against internal-energy losses from radiation, $p\,\textrm {d} V$ work, and advection within the transition region. The density at $r_\textrm {b}$ is determined by balancing turbulent heating and radiative cooling at $r_\textrm {b}$ . I solve the equations of the model analytically in two different parameter regimes. In one of these regimes, the leading-order analytic solution reproduces the results of the aforementioned simplified calculation of $\dot {M}$ , $U_\infty$ , and $T$ . Analytic and numerical solutions to the model equations match a number of observations.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3