Abstract
The Weibel instability is investigated theoretically and numerically under three scenarios: counterstreaming electron beams in background plasma, an electron–positron beam and an electron–proton beam in background plasma. These models occur widely in laboratory and astrophysical environments. The Weibel instability growth rates are determined numerically from the corresponding cold-fluid dispersion relations, which are confirmed with two-dimensional particle-in-cell simulations. The maximum growth rates for the counterstreaming beams in background plasma are an order of magnitude smaller than the maximum growth rates for the beams cases in the same range of density ratios and beam energies. The maximum growth rate for the electron–positron beam case is shown to be at most a factor
$\sqrt {2}$
greater than the electron–proton beam case with similar dispersion behaviours. A non-monotonic relation is found between the maximum Weibel instability growth rates and the electron–positron beam energy, suggesting that increasing beam energies does not entail an increase in the Weibel instability growth rate.
Funder
Engineering and Physical Sciences Research Council
Science and Technology Facilities Council
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献