Maser gain determined by the spatial profile of work done by an average electron and the wavelength of density fluctuation driven by the maser field in multi-photon free-electron two-quantum Stark radiation

Author:

Kim S. H.

Abstract

We find that the electron in an electron–cyclotron maser (ECM) of Nc = n1/3λ ≫ 1, where n and λ are the electron density and the maser wavelength, respectively, can only lower its energy through masing transition. From this fact and the application of Heisenberg's uncertainty principle on photon emission, we infer that until the electron energy becomes lower to pass through the width of uncertainty in the electron energy, the interval time Tint between two successive radiative transitions is zero. Hence, we find that if the number Nt of radiative transitions during the laser period T under the assumption of Tint = 0 is far larger than the number Nu of radiative transitions required to pass through the half-width ΔE of uncertainty in the electron energy, the radiation power from an electron is equal to ΔE/T. We deduce that the shift in the energy level of an average electron is predominantly produced by the density-deviation mode driven by the laser field so as to be spatially sinusoidal with period λw and amplitude $\mathcal W$. We recognize that the uncertainty in the z position of an electron emitting a laser photon through free-electron two-quantum Stark (FETQS) radiation is the wavelength λe of the electric wiggler. Thus, if λw ≪ λe, then ΔE is equal to $\mathcal W$. Based on the above findings, we identify electron–cyclotron masing in a high-density ECM as a gyration-driven FETQS radiation whose power is given by P = ΔE/T, where ΔE is not caused by gyration but rotation around the waveguide axis. The gain calculated based on this identification agrees with the measured one.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3