Abstract
Plasma supports collective modes and particle–wave interactions that lead to complex behaviour in, for example, inertial fusion energy applications. While plasma can sometimes be modelled as a charged fluid, a kinetic description is often crucial for studying nonlinear effects in the higher-dimensional momentum–position phase space that describes the full complexity of the plasma dynamics. We create a differentiable solver for the three-dimensional partial-differential equation describing the plasma kinetics and introduce a domain-specific objective function. Using this framework, we perform gradient-based optimization of neural networks that provide forcing function parameters to the differentiable solver given a set of initial conditions. We apply this to an inertial-fusion-relevant configuration and find that the optimization process exploits a novel physical effect.
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献