‘Ideally’ unstable current sheets and the triggering of fast magnetic reconnection

Author:

Tenerani A.,Velli M.,Pucci F.,Landi S.,Rappazzo A. F.

Abstract

Magnetic reconnection is thought to be the dynamical mechanism underlying many explosive phenomena observed both in space and in the laboratory, although the question of how fast magnetic reconnection is triggered in such high Lundquist ($S$) number plasmas has remained elusive. It has been well established that reconnection can develop over time scales faster than those predicted traditionally once kinetic scales are reached. It has also been shown that, within the framework of resistive magnetohydrodynamics (MHD), fast reconnection is achieved for thin enough sheets via the onset of the so-called plasmoid instability. The latter was discovered in studies specifically devoted to the Sweet–Parker current sheet, either as an initial condition or an apparent transient state developing in nonlinear studies. On the other hand, a fast tearing instability can grow on an ideal, i.e. $S$-independent, time scale (dubbed ‘ideal’ tearing) within current sheets whose aspect ratio scales with the macroscopic Lundquist number as $L/a\sim S^{1/3}$ – much smaller than the Sweet–Parker one – suggesting a new way to approach to the initiation of fast reconnection in collapsing current configurations. Here we present an overview of what we have called ‘ideal’ tearing in resistive MHD, and discuss how the same reasoning can be extended to other plasma models commonly used that include electron inertia and kinetic effects. We then discuss a scenario for the onset of ‘ideal’ fast reconnection via collapsing current sheets and describe a quantitative model for the interpretation of the nonlinear evolution of ‘ideally’ unstable sheets in two dimensions.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3