Triggering tearing in a forming current sheet with the mirror instability

Author:

Winarto Himawan W.ORCID,Kunz Matthew W.ORCID

Abstract

We study the time-dependent formation and evolution of a current sheet (CS) in a magnetised, collisionless, high-beta plasma using hybrid-kinetic particle-in-cell simulations. An initially tearing-stable Harris sheet is frozen into a persistently driven incompressible flow so that its characteristic thickness gradually decreases in time. As the CS thins, the strength of the reconnecting field increases, and adiabatic invariance in the inflowing fluid elements produces a field-biased pressure anisotropy with excess perpendicular pressure. At large plasma beta, this anisotropy excites the mirror instability, which deforms the reconnecting field on ion-Larmor scales and dramatically reduces the effective thickness of the CS. Tearing modes whose wavelengths are comparable to that of the mirrors then become unstable, triggering reconnection on smaller scales and at earlier times than would have occurred if the thinning CS were to have retained its Harris profile. A novel method for identifying and tracking X-points is introduced, yielding X-point separations that are initially intermediate between the perpendicular and parallel mirror wavelengths in the upstream plasma. These mirror-stimulated tearing modes ultimately grow and merge to produce island widths comparable to the CS thickness, an outcome we verify across a range of CS formation timescales and initial CS widths. Our results may find their most immediate application in the tearing disruption of magnetic folds generated by turbulent dynamo in weakly collisional, high-beta, astrophysical plasmas.

Funder

Division of Physics

U.S. Department of Energy

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference76 articles.

1. Limit on stably trapped particle fluxes

2. Kunz, M.W. , Squire, J. , Balbus, S.A. , Bale, S.D. , Chen, C.H.K. , Churazov, E. , Cowley, S.C. , Forest, C.B. , Gammie, C.F. , Quataert, E. , 2019 [Plasma 2020 Decadal] The material properties of weakly collisional, high-beta plasmas. arXiv:1903.04080.

3. Transport processes in a plasma;Braginskii;Rev. Plasma Phys,1965

4. Turbulence, magnetic fields, and plasma physics in clusters of galaxies

5. Magnetic reconnection mediated by hyper-resistive plasmoid instability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3