Magnetic field quantization in pulsars

Author:

Rozina Ch.ORCID,Tsintsadze N. L.,Tsintsadze L. N.

Abstract

Magnetic field quantization is an important issue for degenerate environments such as neutron stars, radio pulsars and magnetars etc., due to the fact that these stars have a magnetic field higher than the quantum critical field strength of the order of $4.4\times 10^{13}~\text{G}$ , accordingly, the cyclotron energy may be equal to or even much more than the Fermi energy of degenerate particles. We shall formulate here the exotic physics of strongly magnetized neutron stars, known as pulsars, specifically focusing on the outcomes of the quantized magnetic pressure. In this scenario, while following the modified quantum hydrodynamic model, we shall investigate both linear and nonlinear fast magnetosonic waves in a strongly magnetized, weakly ionized degenerate plasma consisting of neutrons and an electron–ion plasma in the atmosphere of a pulsar. Here, linear analysis depicts that sufficiently long, fast magnetosonic waves may exist in a weakly dispersive pulsar having finite phase speed at cutoff. To investigate one-dimensional nonlinear fast magnetosonic waves, a neutron density expression as a function of both the electron magnetic and neutron degenerate pressures, is derived with the aid of Riemann’s wave solution. Consequently, a modified Korteweg–de Vries equation is derived, having a rarefractive solitary wave solution. It is found that the basic properties such as amplitude, width and phase speed of the fast magnetoacoustic waves are significantly altered by the electron magnetic and the neutron degenerate pressures. The results of this theoretical investigation may be useful for understanding the formation and features of the solitary structures in astrophysical compact objects such as pulsars, magnetars and white dwarfs etc.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference38 articles.

1. High Magnetic Field Pulsars and Magnetars: A Unified Picture

2. Jeans anisotropic instability

3. Tsintsadze, N. L.  & Tsintsadze, L. N. 2012 arXiv:1212.2830 [physics.plasm-ph].

4. Solitary acoustic waves in weakly ionized gases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3