Author:
Lee J. P.,Cerfon A.,Freidberg J. P.,Greenwald M.
Abstract
The analytic theory presented in Paper I is converted into a form convenient for numerical analysis. A fast and accurate code has been written using this numerical formulation. The results are presented by first defining a reference set of physical parameters based on experimental data from high performance discharges. Scaling relations of maximum achievable elongation (${\it\kappa}_{max}$) versus inverse aspect ratio (${\it\varepsilon}$) are obtained numerically for various values of poloidal beta (${\it\beta}_{p}$), wall radius $(b/a)$ and feedback capability parameter (${\it\gamma}{\it\tau}_{w}$) in ranges near the reference values. It is also shown that each value of ${\it\kappa}_{max}$ occurs at a corresponding value of optimized triangularity (${\it\delta}$), whose scaling is also determined as a function of ${\it\varepsilon}$. The results show that the theoretical predictions of ${\it\kappa}_{max}$ are slightly higher than experimental observations for high performance discharges, as measured by high average pressure. The theoretical ${\it\delta}$ values are noticeably lower. We suggest that the explanation is associated with the observation that high performance involves not only $n=0$ MHD stability, but also $n\geqslant 1$ MHD modes described by ${\it\beta}_{N}$ in the Troyon limit and transport as characterized by ${\it\tau}_{E}$. Operation away from the $n=0$ MHD optimum may still lead to higher performance if there are more than compensatory gains in ${\it\beta}_{N}$ and ${\it\tau}_{E}$. Unfortunately, while the empirical scaling of ${\it\beta}_{N}$ and ${\it\tau}_{E}$ with the elongation (${\it\kappa}$) has been determined, the dependence on ${\it\delta}$ has still not been quantified. This information is needed in order to perform more accurate overall optimizations in future experimental designs.
Publisher
Cambridge University Press (CUP)
Reference24 articles.
1. Natural elongation and triangularity of tokamak equilibria
2. MATLABversion R2014b, 2014 Natick, Massachusetts, The MathWorks, Inc.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献