Tokamak elongation – how much is too much? Part 2. Numerical results

Author:

Lee J. P.,Cerfon A.,Freidberg J. P.,Greenwald M.

Abstract

The analytic theory presented in Paper I is converted into a form convenient for numerical analysis. A fast and accurate code has been written using this numerical formulation. The results are presented by first defining a reference set of physical parameters based on experimental data from high performance discharges. Scaling relations of maximum achievable elongation (${\it\kappa}_{max}$) versus inverse aspect ratio (${\it\varepsilon}$) are obtained numerically for various values of poloidal beta (${\it\beta}_{p}$), wall radius $(b/a)$ and feedback capability parameter (${\it\gamma}{\it\tau}_{w}$) in ranges near the reference values. It is also shown that each value of ${\it\kappa}_{max}$ occurs at a corresponding value of optimized triangularity (${\it\delta}$), whose scaling is also determined as a function of ${\it\varepsilon}$. The results show that the theoretical predictions of ${\it\kappa}_{max}$ are slightly higher than experimental observations for high performance discharges, as measured by high average pressure. The theoretical ${\it\delta}$ values are noticeably lower. We suggest that the explanation is associated with the observation that high performance involves not only $n=0$ MHD stability, but also $n\geqslant 1$ MHD modes described by ${\it\beta}_{N}$ in the Troyon limit and transport as characterized by ${\it\tau}_{E}$. Operation away from the $n=0$ MHD optimum may still lead to higher performance if there are more than compensatory gains in ${\it\beta}_{N}$ and ${\it\tau}_{E}$. Unfortunately, while the empirical scaling of ${\it\beta}_{N}$ and ${\it\tau}_{E}$ with the elongation (${\it\kappa}$) has been determined, the dependence on ${\it\delta}$ has still not been quantified. This information is needed in order to perform more accurate overall optimizations in future experimental designs.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference24 articles.

1. Natural elongation and triangularity of tokamak equilibria

2. MATLABversion R2014b, 2014 Natick, Massachusetts, The MathWorks, Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3