Scattering of radiofrequency waves by randomly modulated density interfaces in the edge of fusion plasmas

Author:

Papadopoulos A.D.ORCID,Glytsis E.N.,Ram A.K.,Hizanidis K.

Abstract

In the scrape-off layer and the edge region of a tokamak, the plasma is strongly turbulent and scatters the radiofrequency (RF) electromagnetic waves that propagate through this region. It is important to know the spectral properties of these scattered RF waves, whether used for diagnostics or for heating and current drive. The spectral changes influence the interpretation of the obtained diagnostic data, and the current and heating profiles. A full-wave, three-dimensional (3-D) electromagnetic code ScaRF (see Papadopoulos et al., J. Plasma Phys., vol. 85, issue 3, 2019, 905850309) has been developed for studying the RF wave propagation through turbulent plasma. ScaRF is a finite-difference frequency-domain (FDFD) method used for solving Maxwell's equations. The magnetized plasma is defined through the cold plasma by the anisotropic permittivity tensor. As a result, ScaRF can be used to study the scattering of any cold plasma RF wave. It can also be used for the study of the scattering of electron cyclotron waves in ITER-type and medium-sized tokamaks such as TCV, ASDEX-U and DIII-D. For the case of medium-sized tokamaks, there is experimental evidence that drift waves and rippling modes are present in the edge region (see Ritz et al., Phys. Fluids, vol. 27, issue 12, 1984, pp. 2956–2959). Hence, we have studied the scattering of RF waves by periodic density interfaces (plasma gratings) in the form of a superposition of spatial modes with varying periodicity and random amplitudes (see Papadopoulos et al., J. Plasma Phys., vol. 85, issue 3, 2019, 905850309). The power reflection coefficient (a random variable) is calculated for different realizations of the density interface. In this work, the uncertainty of the power reflection coefficient is rigorously quantified by use of the Polynomial Chaos Expansion (see Xiu & Karniadakis, SIAM J. Sci. Comput., vol. 24, issue 2, 2002, pp. 619–644) method in conjunction with the Smolyak sparse-grid integration (see Papadopoulos et al., Appl. Opt., vol. 57, issue 12, 2018, pp. 3106–3114), which is known as the PCE-SG method. The PCE-SG method is proven to be accurate and more efficient (roughly a 2-orders of magnitude shorter execution time) compared with alternative methods such as the Monte Carlo (MC) approach.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference26 articles.

1. Finite-Difference Time-Domain Analysis

2. Edge turbulence measurements in toroidal fusion devices

3. Bairaktaris, F. , Papagiannis, P. , Tsironis, C. , Kokkorakis, G. , Hizanidis, K. , Chellais, O. , Alberti, S. , Furno, I. , Ram, A.K. & TCV-team 2017 Advanced homogenization approach for a plasma dielectric mixture: case of a turbulent tokamak. In European Fusion Theory Conference (EFTC) 2017.

4. Computational studies on scattering of radio frequency waves by density filaments in fusion plasmas

5. Adaptive sparse polynomial chaos expansion based on least angle regression

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3