Spatially localized particle energization by Landau damping in current sheets produced by strong Alfvén wave collisions

Author:

Howes Gregory G.ORCID,McCubbin Andrew J.,Klein Kristopher G.ORCID

Abstract

Understanding the removal of energy from turbulent fluctuations in a magnetized plasma and the consequent energization of the constituent plasma particles is a major goal of heliophysics and astrophysics. Previous work has shown that nonlinear interactions among counterpropagating Alfvén waves – or Alfvén wave collisions – are the fundamental building block of astrophysical plasma turbulence and naturally generate current sheets in the strongly nonlinear limit. A nonlinear gyrokinetic simulation of a strong Alfvén wave collision is used to examine the damping of the electromagnetic fluctuations and the associated energization of particles that occurs in self-consistently generated current sheets. A simple model explains the flow of energy due to the collisionless damping and the associated particle energization, as well as the subsequent thermalization of the particle energy by collisions. The net particle energization by the parallel electric field is shown to be spatially localized, and the nonlinear evolution is essential in enabling spatial non-uniformity. Using the recently developed field–particle correlation technique, we show that particles resonant with the Alfvén waves in the simulation dominate the energy transfer, demonstrating conclusively that Landau damping plays a key role in the spatially localized damping of the electromagnetic fluctuations and consequent energization of the particles in this strongly nonlinear simulation.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3