Global stochastic optimization of stellarator coil configurations

Author:

Glas SilkeORCID,Padidar Misha,Kellison Ariel,Bindel David

Abstract

In the construction of a stellarator, the manufacturing and assembling of the coil system is a dominant cost. These coils need to satisfy strict engineering tolerances, and if those are not met the project could be cancelled as in the case of the National Compact Stellarator Experiment (NCSX) project (R.L. Orbach, 2008, https://ncsx.pppl.gov/DOE_NCSX_052208.pdf). Therefore, our goal is to find coil configurations that increase construction tolerances without compromising the performance of the magnetic field. In this paper, we develop a gradient-based stochastic optimization model which seeks robust stellarator coil configurations in high dimensions. In particular, we design a two-step method: first, we perform an approximate global search by a sample efficient trust-region Bayesian optimization; second, we refine the minima found in step one with a stochastic local optimizer. To this end, we introduce two stochastic local optimizers: BFGS applied to the sample average approximation; and Adam, equipped with a control variate for variance reduction. Numerical simulations performed on a W7-X-like coil configuration demonstrate that our global optimization approach finds a variety of promising local solutions at less than $0.1\,\%$ of the cost of previous work, which considered solely local stochastic optimization.

Funder

Simons Foundation

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference37 articles.

1. Lange, M. , Zühlke, D. , Holz, O. & Villmann, T. 2014 Applications of lp-norms and their smooth approximations for gradient based learning vector quantization. In ESANN, pp. 271–276. ESANN.

2. Physics and Engineering Design for Wendelstein VII-X

3. Engineering optimization of stellarator coils lead to improvements in device maintenance

4. Global ideal magnetohydrodynamic stability analysis for the configurational space of Wendelstein 7–X

5. Orbach, R. 2008 Statement about the future of the Princeton Plasma Physics Laboratory; Under Secretary for Science and Director, Office of Science, U.S. Department of Energy, https://ncsx.pppl.gov/DOE_NCSX_052208.pdf.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3