Sexual shape dimorphism and selection pressure on males in fossil ostracodes

Author:

Yamaguchi Tatsuhiko,Honda Rie,Matsui Hiroki,Nishi Hiroshi

Abstract

AbstractSexual dimorphism is thought to have evolved via selection on both sexes. Ostracodes display sexual shape dimorphism in adult valves; however, no previous studies have addressed temporal changes on evolutionary timescales or examined the relationships between sexual shape dimorphism and selection pressure and between sexual shape dimorphism and juvenile shape. Temporal changes in sexually dimorphic traits result from responses of these traits to selection pressure. Using the Gaussian mixture model for the height/length ratio, a valve-shape parameter, we identified sexual differences in the valve shape of Krithe dolichodeira s.l. from deep-sea sediments of the Paleocene (62.6–57.6 Ma) and estimated the proportion of females in the fossil populations at 11 time intervals. Because the proportion of females in a population is altered by the mortality rate of adult males, it is reflective of selection pressure on males. We attempted to correlate the height/length ratios between the sexes with the proportion of females, taking into consideration that the valve shape was not linked with the selection pressure on males. In time-series data of the height/length ratio, both sexes indicate no significant changes on evolutionary timescales, even though the sex ratio of the population changed from female skewed to male skewed during the late Paleocene. The sexual shape dimorphism was not driven by sexual selection. The static allometry between the height/length ratio and length indicates that the sexual shape dimorphism did not function for sexual display. The absence of change over time in the female allometric slope suggests that the evolution of valve shape was constrained by stasis.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3