First Case of Multiple Resistance to Glyphosate and PPO-inhibiting Herbicides in Rigid Ryegrass (Lolium rigidum) in Spain

Author:

Fernandez-Moreno Pablo Tomas,Rojano-Delgado Antonia Maria,Menendez Julio,De Prado Rafael

Abstract

Five rigid ryegrass populations suspected of being resistant to both glyphosate and oxyfluorfen were collected in southern Spain and tested under laboratory-controlled conditions. Four populations (Depuradora, Condado, AlamoRasilla, and Portichuelo) were treated with glyphosate for at least 15 consecutive years, and treatments during the last 5 yr were mixed with oxyfluorfen. The fifth population (4alamos) followed the same glyphosate treatment, although oxyfluorfen was never used to control it. Dose–response assays confirmed glyphosate resistance in all populations, with resistance indexes ranging from 11.7 to 37.5 (GR90). Shikimate accumulation assays consistently supported these data, as the most glyphosate-resistant populations (Depuradora and Condado) displayed the lowest shikimate levels. Surprisingly, four populations (Depuradora, Condado, AlamoRasilla, and Portichuelo) displayed 7.93- to 70.18-fold more resistance (GR90) to oxyfluorfen, despite limited selection pressure, showing a similar resistance pattern as that for glyphosate. The 4alamos population displayed oxyfluorfen GR90values that were similar to those observed in susceptible plants; however, this population was significantly more resistant in terms of plant survival (LD90). Protoporphyrin IX accumulation assays supported the results of dose–response assays, in that the most oxyfluorfen-resistant populations accumulated less protoporphyrin IX. Although more studies are needed, it seems that these five glyphosate-resistant weed populations display a natural tendency to easily develop resistance to oxyfluorfen, with the populations that have higher resistance to glyphosate also having higher resistance to oxyfluorfen.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3