Numerical modelling of ice shelf dynamics

Author:

Determann Jürgen

Abstract

By considering the basic stress equations for a unit volume of ice, a set of differential equations describing ice shelf flow is derived. In view of the lack of basal shear stresses at the bottom of ice shelf a model simulation which is restricted to the horizontal dimensions will not imply substantial errors. The model is applied to the Filchner-Ronne Ice Shelf, Antarctica, and model equations are solved in terms of finite differences on a 10 × 10 km grid. Present ice thickness data and boundary conditions, i.e. the balance velocities at the grounding line and strain rates at the ice front are entered as input. Using a non-linear Glen-type flow law (n=3) and a constant depth-averaged flow law parameter, representing an ice temperature of −17°C, a convincing velocity field is derived as a solution of the model equations. The model takes into account restrained flow across ice rumples where sufficient field data are available. A diagnostic run reproducing present velocity magnitudes is followed by two prognostic runs, each representing 2000 years of simulation. Transient ice thickness changes are obtained from solving the mass conservation equation. Two different assumptions concerning basal melting rates demonstrate its importance to ice shelf dynamics. Assumptions are: a) no basal melting, b) basal melting rates (−2m a−1 to +3m a−1) as derived from model results and geophysical field data.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0);Geoscientific Model Development;2021-05-05

2. A data-constrained model for compatibility check of remotely sensed basal melting with the hydrography in front of Antarctic ice shelves;2014-02-05

3. Temporal and Regional Variation of Sea Ice Draft And Coverage in the Weddell Sea Obtained from Upward Looking Sonars;Antarctic Sea Ice: Physical Processes, Interactions and Variability;2013-03-22

4. Marine Ice Beneath Filchner Ice Shelf: Evidence from a Multi-Disciplinary Approach;Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin;2013-03-18

5. Physical Controls on Ocean Circulation Beneath Ice Shelves Revealed by Numerical Models;Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin;2013-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3