Sublithic bacteria associated with Antarctic quartz stones

Author:

Smith Matthew C.,Bowman John P.,Scott Fiona J.,Line Martin A.

Abstract

Quartz stone sublithic cyanobacterial communities are common throughout the Vestfold Hills, Eastern Antarctica (68°S 78°E) contributing biomass in areas otherwise devoid of any type of vegetation. In this study, the sublithic microbial community and underlying soil was investigated using a variety of traditional and molecular methods. Although direct epifluorescent counts of the sublithic growth (average 1.1 × 109 cells g−1 dry weight) and underlying soil (0.5 × 109 cells g−1 dry weight) were similar, sublith viable counts (2.1 × 107 cfu g−1 dry weight) were on average 3-orders of magnitude higher in the subliths. Enrichment and molecular analyses revealed the predominate cyanobacteria were non-halophilic, able to grow optimally at 15–20°C, and were related to the Phormidium subgroup with several distinct morphotypes and phylotypes present. Sublithic heterotrophic bacterial populations and those of underlying soils included mostly psychrotolerant taxa typical of Antarctic soil. However, psychrophilic and halophilic bacteria, mostly members of the alpha subdivision of the Proteobacteria and the order Cytophagales, were abundant in the sublithic growth film (20–40% of the viable count and about 50% of isolated individual taxa) but absent from underlying soils. It is suggested that quartz stone subliths might constitute a “refuge” for psychrophilic bacteria.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rock Surface Colonization by Groundwater Microorganisms in an Aquifer System in Quebec, Canada;Diversity;2024-06-28

2. Extremophile hypolithic communities in the Vestfold Hills, East Antarctica;Antarctic Science;2024-02

3. Extremophiles—Organisms that survive and thrive in extreme environmental conditions;Water Worlds in the Solar System;2023

4. Hypolithic;Encyclopedia of Astrobiology;2023

5. Psychrophiles;Physiology, Genomics, and Biotechnological Applications of Extremophiles;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3