A multimodal electrochemical approach to measure the effect of zinc on vesicular content and exocytosis in a single cell model of ischemia

Author:

Wang YingORCID,Gu ChaoyiORCID,Ewing Andrew G.ORCID

Abstract

Abstract Zinc ion is essential for normal brain function that modulates synaptic activity and neuronal plasticity and it is associated with memory formation. Zinc is considered to be a contributing factor to the pathogenesis of ischemia, but the association between zinc and ischemia on vesicular exocytosis is unclear. In this study, we used a combination of chemical analysis methods and a cell model of ischemia/reperfusion to investigate exocytotic release and vesicular content, as well as the effect of zinc alteration on vesicular exocytosis. Oxygen–glucose deprivation and reperfusion (OGDR) was used as an in vitro model of ischemia in a model cell line. Exocytotic release and vesicular storage of catecholamine content were increased following OGDR, resulting in a higher fraction of release during exocytosis. However, zinc eliminated these increases following OGDR and the fraction of release remained unchanged. Understanding the consequences of zinc accumulation on vesicular exocytosis at the early stage of OGDR should aid in the development of therapeutic strategies to reduce ischemic brain injury. As the fraction released has been suggested to be related to presynaptic plasticity, insights are gained towards deciphering ischemia related memory impairment.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3