Dykes or diapirs?

Author:

Petford Nick

Abstract

ABSTRACT:Until the last few years, diapirism reigned supreme among granitoid ascent mechanisms. Granitoid masses in a variety of material states, from pure melt through semi-molten crystal mushes to solid rock, were believed to have risen forcefully through the continental crust to their final emplacement levels in a way analogous to salt domes. The structural analogy between granite plutons and salt diapirs, which gained acceptance in the 1930s, has clearly been attractive despite the pessimistic outcomes of thermal models and, at best, ambiguous field evidence.In contrast with traditional diapiric ascent, dyke transport of granitoid magmas has a number of important implications for the emplacement and geochemistry of granites that have yet to be fully explored. Rapid ascent rates of ≍ 10 2m/s predicted for granite melts in dykes (cf. m/a for diapirs) mean that felsic magmas can be transported through the continental crust in months rather than thousands (or even millions) of years, and that large plutons can in principle be filled in <104 a. Granitic melts are likely to rise adiabatically from their source regions, leading to the resorption of any entrained restitic material. Ascending melts in dykes close to their critical minimum widths may have little opportunity to assimilate significant amounts of country rock, and if source extraction is sufficiently rapid, most crustal contamination will be restricted to the site of emplacement. Rates of pluton and batholith inflation will be determined by the amount and rate of melt extraction at source.The construction of large plutons and batholiths piecemeal from a number of magma pulses separated by periods of relative quiescence provides a means of reconciling rapid ascent rates with times for batholith construction based on average rates. Field and seismic evidence that shows batholiths as large, sheet-like structures with flat roofs and floors is consistent with a general model for plutons and batholiths as laccolith-type structures, fed from depth by dykes. The overall geometry of this type of structure helps ameliorate the space problem, which developed as a consequence of the unrealistic volumes of upwelling granite associated with the classical diapir model.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3