Abstract
This article reviews the application of various notions from the theory of dynamical systems to the analysis of numerical approximation of initial value problems over long-time intervals. Standard error estimates comparing individual trajectories are of no direct use in this context since the error constant typically grows like the exponential of the time interval under consideration.Instead of comparing trajectories, the effect of discretization on various sets which are invariant under the evolution of the underlying differential equation is studied. Such invariant sets are crucial in determining long-time dynamics. The particular invariant sets which are studied are equilibrium points, together with their unstable manifolds and local phase portraits, periodic solutions, quasi-periodic solutions and strange attractors.Particular attention is paid to the development of a unified theory and to the development of an existence theory for invariant sets of the underlying differential equation which may be used directly to construct an analogous existence theory (and hence a simple approximation theory) for the numerical method.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Numerical Analysis
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献