Laser sputtering of Zr under Ar and O2 environments explored by quartz crystal microbalance and SEM analysis

Author:

Sarfraz Syed Muhammad Abouzar,Bashir Shazia,Mahmood Khaliq

Abstract

AbstractThe effect of laser fluence and nature of ambient environments on the sputtering yield, surface modifications, crater depth, UV-visible absorption spectra, chemical composition, and micro hardness of Zr has been investigated. Nd: YAG laser (532 nm, 10 Hz, 6 ns) at different fluences varying from 16 to 60.8 Jcm−2 was employed as an irradiation source. All measurements are performed under two ambient environments of Ar and O2 at a constant pressure of 10 Torr. Quartz crystal microbalance has been employed for the measurement of sputtering yield of laser irradiated Zr. It is revealed that sputtering yield increases monotonically with increasing fluence under both environments however, it is higher in Ar as compared to O2 environment. Scanning electron microscope (SEM) has been used to explore the surface morphology. SEM analysis exhibits the formation of cones, ridges, and cracks at the central ablated areas whereas, laser-induced periodic surface structures, periodic ridges and sharp cones are observed at inner boundaries in both environments of Ar and O2. Sharp spikes are observed in both environments, however, their height and distinctness are more pronounced in Ar as compared to O2. Cones are characteristic features in Ar, whereas, cavities and channels are dominant features in O2 environment at outer boundaries. The formation and growth of surface structures are dependent upon laser fluence and ambient gas nature. The depth profilometry has been used to measure the crater depth of irradiated Zr target by using an optical microscope. UV visible spectroscopy and energy-dispersive X-ray analyses reveal the oxide formation in the case of Zr irradiation in O2 environment. The Vicker Micro-hardness tester has been employed to measure the hardness. The higher observed values of sputtering yield, crater depth and hardness of laser ablated Zr in Ar as compared to O2 are well correlated with distinct surface structures.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3