Analysis and 2D numerical modeling of burn through of metallic foil experiments using power KrF and Nd lasers

Author:

LEBO I.G.,MIKHAILOV Yu.A.,TISHKIN V.F.,ZVORYKIN V.D.

Abstract

Two series of experiments on laser irradiation of the different thickness Al-foils were made using laser facilities “GARPUN” and “PICO” (Lebedev Physical Institute, Moscow). “GARPUN” is the KrF-laser with pulse energy Elas ≈ 100 J and pulse duration τ ≈ 100 ns. “PICO” is a Nd-laser facility. The laser energy is Elas1 ≈ 20 J and τ ≈ 3–4 ns in a single beam. The burn through time (tb) of different thickness foils was studied. We have varied the foil thickness: d = 20–500 μm for “GARPUN” facility experiments, and d = 3–12 μm for the case of “PICO” experiments. It was discovered that the rates of the foil burn through are much higher than those obtained in (Dahmani et al., 1991a,b). The experimental data were analyzed with the help of 2D numerical simulations, using the 2D Euler code “NUTCY.” Good agreement was obtained between numerical and experimental results. In the first case the rate of foil “enlightment” is defined by transversal displacement of matter (“drilling effect”). With allowance for the effect of “hot spots formations” it was possible to explain the burn through of thick foils and low laser energy at the rear side of films in “PICO” facility experiments (“microdrilling effect”). The methods of the diminishing of the influence of microdrilling effect (or “imprint” effect) on the nonuniformity of ablation pressure are discussed.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3