Planar shock waves in liquids produced by high-energy KrF laser: A technique for studying hydrodynamic instabilities

Author:

Zvorykin V.D.,Berthe L.,Boustie M.,Levchenko A.O.,Ustinovskii N.N.

Abstract

AbstractThe paper is devoted to research and development of a novel experimental technique—liquid-filled laser-driven shock tube (LST) for modeling of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) hydrodynamic instabilities development at the contact surface of two immiscible liquids under shock wave (SW) passage. 100-J, 100-ns KrF laser facility GARPUN has been used to irradiate some opaque liquids. A homogenizing focusing system combined multi-element prism raster and a lens to provide non-uniformity less than a few percents across a square 7 × 7-mm spot, laser intensities being varied in the range of q = 0.004–2 GW/cm2. Surface plasma blow-off produced a planar SW, which propagated into the liquid. SW amplitudes as high as 0.8 GPa weakly damping with increasing thickness were measured in dibutyl-phthalate (DBP), which volumetrically absorbed ultraviolet (UV) laser light. Nonlinear absorption coefficients and laser breakdown thresholds were measured for pure water and UV optical materials intended to confine plasma. Test bench experiments were performed to produce standing acoustic waves as initial perturbations at the interface between two immiscible liquids.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference55 articles.

1. Dynamics of shock waves generated in liquids by high-energy KrF laser;Zvorykin;SPIE,2008

2. Simulation of the turbulent-mixing region development upon laser acceleration of thin foils;Zvorykin;Bull. Lebedev Phys. Inst,2005

3. High-Energy GARPUN KrF laser interaction with solid and thin-foil targets in ambient air;Zvorykin;SPIE,2004

4. Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3