Author:
Wang Xiao-Fang,Wang Jin-Yu,Chen Xiao-Hu,Chen Xin-Gong,Wei Lai
Abstract
AbstractTo diagnose the implosion of a laser-driven-fusion target such as the symmetry, the hydrodynamic instability at the interface, a high-resolution, large field-of-view kilo-electron-volt X-ray imaging is required. A Kirkpatrick-Baez (K-B) microscope is commonly used, but its field of view is limited to a few hundred microns as the resolution decreases rapidly with the increase of the field of view. A higher resolution could be realized by using a Fresnel zone plate (FZP) for imaging. Presented in this work is a numerical study on the imaging properties of an FZP at Ti-Kα wavelength of 0.275 nm, and a comparison to a K-B imager. It is found that the FZP can realize not only a resolution better than 1 µm, but also a field-of-view larger than 20 mm when the FZP is illuminated by X-rays of spectral bandwidth less than 1.75%. These results indicate the feasibility of applying the FZP in high-resolution, large field-of-view X-ray imaging.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献