J. Turunen and F. Wyrowski (eds.), Diffractive Optics for Industrial and Commercial Applications, Akademie Verlag, Berlin, Germany, 1997. 426 pp.

Author:

Jahns Juergen

Abstract

The field of diffractive optics is at the same time old and young. Diffraction gratings have been known for two centuries and used extensively in spectroscopy, for example. Also the theoretical understanding of the basic properties of grating diffraction has been well developed since that time. Until the 1960s, the technological foundation of grating manufacture used to be precision mechanics. It was then, when with the advent of the laser, things gradually started to change. On the one hand, laser interferometry became an additional tool to fabricate grating structures with very small periods. On the other hand, many new applications for optics started to develop based on the use of different types of laser sources. Some examples that may be mentioned are—besides modern spectroscopic techniques—areas like material processing, optical communications and information processing, optical data storage, etc. Consequently, the term “diffractive optics” has obtained a different flavor during the past 20–30 years. New types of diffractive elements were being developed with new technologies. This started in the mid-1960s with the invention of computer-generated holography which allowed to create “arbitrary” wavefronts (this means, within practical limits) by diffracting a light wave at an irregular binary structure. The computation and fabrication of computer-generated holograms was made possible by then newly available digital computers and plotting equipment. Since the early 1970s, people started to make diffractive elements using microfabrication techniques (lithography, etching, etc.) adapted from the processing of electronic circuits. These ideas were initially demonstrated in industrial research laboratories like Philips and Thomson-CSF.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3