Generation and transportation of high-intensity pulsed ion beam at varying background pressures

Author:

Zhu X.P.,Ding L.,Zhang Q.,Isakova Yu.,Bondarenko Y.,Pushkarev A.I.,Lei M.K.

Abstract

AbstractHigh-intensity pulsed ion beam (HIPIB) technology is developed as an advanced manufacturing method for components with improved wear, corrosion and/or fatigue performance, etc. Robust HIPIB equipment with stable repetitive operation, long-lifetime, and easy maintenance are desired for industrial applications, on which stability of ion beam parameters is critical to achieve consistent result of reproducibility. Here, magnetically insulated ion diodes (MIDs) as ion source with durable graphite anode are investigated in a simple self-magnetic field configuration under repetitive operation. Influence of background pressure on ion beam generation and transportation is emphasized since ion beam sources were intrinsically a vacuum-based system. Comparative experiments were conducted on two types of HIPIB equipment, that is, TEMP-6 and TEMP-4M, differing in vacuum packages where turbo-molecular pump or oil diffusion pump was used. Both the HIPIB equipments are operated on a bipolar pulse mode, that is, a first negative pulse of 150–200 kV with pulse duration 450–500 ns to generate anode plasma on explosive electron emission, and a second positive pulse of 200–250 kV with 120 ns to accelerate the ions. Ion beam energy density up to 8 J/cm2 is achievable using MIDs of geometrical focusing configuration, and the total energy, energy density distribution along cross-section, deflection and divergence, and charge neutralization of the ion beams are assessed under background pressures in a wide range of two orders of magnitude, that is, 1–100 mPa. No appreciable change in the parameters is observed up to 50 mPa, and merely a slight increase in the beam deflection from about ±3 mm to about ±4 mm at the focal point over 50 mPa. The stability of ion beam at the varied pressure is mainly facilitated by the higher pressure up to several Pa in anode–cathode gap during plasma generation and good neutralizing effect for ion beam transportation.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3