Surface morphology correlated with sputtering yield measurements of laser-ablated iron

Author:

Tehniat Saba,Bashir Shazia,Mahmood Khaliq,Sharif Ayesha

Abstract

AbstractIron (Fe) targets are exposed to 100 pulses of Nd: YAG laser (532 nm, 6 ns, 10 Hz) at various fluences ranging from 4.8 to 38.5 J/cm2. In order to explore the effect of background environment, targets have been exposed under vacuum as well as under five different pressures ranging from 5 to 100 Torr of various background gases like Ar, Ne, O2, and air. The sputtering yield measurements and surface modifications of laser-ablated Fe are explored by quartz crystal microbalance (QCM) and scanning electron microscopy (SEM) analysis, respectively. QCM measurements reveal that the sputtering yield of Fe is strongly affected by laser fluence, pressure and nature of gas. By increasing laser fluence, the sputtering yield initially increases due to enhanced energy deposition and then saturates due to self-regulating regime. However, with increasing pressures of background gases, the sputtering yield of Fe initially increases and then decreases. Owing to thermal conductivity, ionization potential, and mass of background gas, the sputtering yield of Fe varies in accordance with the sequence vacuum >Ar>Ne>O2> air. The SEM analysis reveals the formation of several features like laser-induced periodic surface structures, cones, cavities, channels, multiple ablative craters, and dot-like structures. The difference in the periodicity, size, and shape of features is explained on the basis of confinement and shielding effects of plasma and various energy deposition mechanisms. The surface profilometry analysis reveals that the crater depth increases with increasing the laser fluence in inert environments, while in case of reactive environments, it tends to decrease initially and afterwards it increases. X-ray diffraction and energy-dispersive X-ray analyses confirm the oxide formation in case of Fe treatment in O2 and air; however, no additional phases are observed for Fe irradiation under inert environments.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3