Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction

Author:

BADZIAK J.,GŁOWACZ S.,JABŁOŃSKI S.,PARYS P.,WOŁOWSKI J.,HORA H.

Abstract

The possibilities of producing ultrahigh-current-density ps ion fluxes by the skin-layer interaction of a short (≤ 1ps) laser pulse with plasma were studied using two-fluid hydrodynamic simulations, and the time-of-flight measurements. Backward-emitted ion fluxes from a massive (Au) target as well as forward-emitted fluxes from various thin foil targets irradiated by a 1-ps laser pulse of intensity up to 2 × 1017W/cm2were recorded. Both the simulations and the measurements confirmed that using the short-pulse skin-layer interaction of a laser pulse with a thin pre-plasma layer in front of a solid target, a high-density collimated ion flux of extremely high ion current density (∼ 1010A/cm2close to the target), can be generated at laser intensity only ∼ 1017W/cm2. The ion current densities produced by this way were found to be comparable to (or even higher than) those estimated from recent short-pulse experiments using a target normal sheath acceleration mechanism at relativistic laser intensities. The effect of the target structure on the current densities and energies of forward-emitted ions is demonstrated.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3