Analytical study on deep penetration induced by focused moving high-energy beam

Author:

Chen B.C.,Ho C.Y.,Wen M.Y.,Lin V.H.,Lee Y.C.

Abstract

AbstractThis paper investigates the focal location effects on the penetration depth of molten region surrounding a paraboloid of revolution-shaped cavity (i.e. keyhole of this model) irradiated by a moving focused energy beam, which profile of intensity is assumed to be Gaussian distribution. Considering the momentum balance at the base of the keyhole, a quasi-steady-state thermal model relative to a constant-speed moving high-energy beam and paraboloid of revolution-shaped cavity is developed in a parabolic coordinate system. The analytical solution is obtained for this model with the adiabatic condition directly set on the workpiece surface for semi-infinite domain instead of the image method for infinite domain using the separation-of-variables method. The analytical solution of this model gives a reasonable prediction for the cavity temperatures. The predicted relation of the penetration depth to the focal location agrees with the available measured data. The effects of focal convergence angle and spot size on the penetration depth are also discussed.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference30 articles.

1. Effect of surface convection on stationary gta weld zone temperature;Giedt;Welding J,1984

2. Spectroscopic monitoring of penetration depth in CO2 Nd:YAG and fiber laser welding processes

3. The transition from shallow to deep penetration during electron beam;Elmer;Welding J.,1990

4. Energy absorption in a conical cavity truncated by spherical cap subject to a focused high intensity beam

5. Melting and solidification of a metal system in a rectangular cavity

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3