Numerical simulations of laser ablated plumes using Particle-in-Cell (PIC) methods

Author:

Genco Filippo,Hassanein Ahmed

Abstract

AbstractLaser ablation of graphite materials in the presence of an external magnetic field is studied with the use of the newly developed HEIGHTS-PIC particle-in-cell code and compared with both theoretical and experimental results. Carbon plumes behavior controlled by a strong magnetic field is of interest to evaluate the plume shielding effects to protect the original exposed target from further damage and erosion. Since intense power deposition on plasma facing components is expected during Tokamaks loss of plasma confinement events such as disruptions, vertical displacements event, runaway electrons, or during normal operating conditions such as edge-localized modes, it is critical to better understand the evolving target plasma behavior for more accurate prediction of the potential damage created by these high-energetic dumps which may not be easily mitigated without loss of structural and functional performance of the plasma facing components. Numerical experiments have been performed to provide benchmarking conditions for the HEIGHTS-PIC simulation package originally designed to evaluate the erosion of the Tokamak surfaces, splashing of the melted/ablated-vaporized material, and transport into the bulk plasma with consequent plasma contamination. Evolving target plasma temperature and density are calculated and compared with measured reported values available into literature for similar conditions and show good agreement with the HEIGHTS-PIC package predictions.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3