Cooperative Localisation of AUVs based on Huber-based Robust Algorithm and Adaptive Noise Estimation

Author:

Bo Xu,Razzaqi Asghar. A.ORCID,Yalong Liu

Abstract

In this paper, adaptive noise estimation is used along with a previously proposed Huber-based robust algorithm for cooperative localisation of Autonomous Underwater Vehicles (AUVs). The Huber-based robust cooperative localisation algorithm named Huber-based Iterative Divided Difference Filtering (HIDDF), proposed in our previous work, effectively achieved a robust result against abnormal measurement noise, enhanced the stability of the filtering algorithm and improved the performance of cooperative localisation state estimation. However, its performance could be significantly further improved if it could estimate the system's noise statistical properties online in real time and then adaptively adjust the filtering gain matrix accordingly. In this paper, a novel adaptive noise estimation algorithm is proposed based on a covariance matching method. The proposed algorithm is suitable for adaptively estimating Gaussian and non-Gaussian measurement as well as process noise. The efficacy of the proposed algorithm has been verified through simulation results. In order to further verify the effectiveness of the proposed algorithm in practical systems, lake tests were conducted. Then, based on offline test data, the performance of the cooperative positioning algorithm under dual-pilot and single-pilot schemes was simulated. The advantages and feasibility of the algorithm are analysed and compared through performance comparison. Cooperative localisation accuracy of the previously proposed Huber-based robust algorithm has been enhanced significantly when used with the proposed adaptive noise estimation algorithm.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3