Author:
Zhu Daqi,Hua Xun,Sun Bing
Abstract
A biologically inspired neurodynamics-based tracking controller of underactuated Autonomous Underwater Vehicles (AUV) is proposed in this paper. The proposed control strategy includes a velocity controller with biological neurons and an adaptive sliding mode controller. The biological neurons are embedded into the backstepping velocity controller to eliminate the sharp speed jumps commonly existing in vehicles due to tracking errors changing suddenly. The outputs of the velocity controller are used as the command inputs of the sliding mode controller, and the thruster control constraints problems that are commonly seen in the backstepping control of AUV are solved by the proposed controller. Simulation results show that the control strategy achieved success in smoothly tracking AUV position and velocity.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献