A Simple Theory on the Dynamical Effects of a Stratified Fluid Core Upon Nutational Motion of the Earth

Author:

Sasao Tetsuo,Okubo Shuhei,Saito Masanori

Abstract

The theory of Molodensky (1961) on dynamical effects of a stratified fluid outer core upon nutations and diurnal Earth tides is reconstructed on a new and probably much simpler ground. A theory equivalent to Molodensky's is well represented on the basis of two linear equations for angular-momentum balance of the whole Earth and the fluid outer core, which differ from the well-known equations of Poincaré (1910) only in the existence of products of inertia due to deformations of the whole Earth and fluid outer core. The products of inertia are characterized by four parameters which are easily computed for every Earth model by the usual Earth tide equations. A reciprocity relation exists between two of the parameters. The Adams-Wiliamson condition is not a necessary premise of the theory. Amplitudes of nutations and tidal gravity factors are computed for three Earth models. A dissipative core-mantle coupling is introduced into the theory qualitatively. The resulting equations are expressed in the same form as those of Sasao, Okamoto and Sakai (1977). Formulae for secular changes in the Earth-Moon system due to the core-mantle friction are derived as evidences of internal consistency of the theory.

Publisher

Cambridge University Press (CUP)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The transition from equations presented in matrix form for the perturbed Earth’s rotation to excitation equations;Izmeritel`naya Tekhnika;2024-06-10

2. Mars orientation and rotation angles;Celestial Mechanics and Dynamical Astronomy;2023-10

3. The Earth's rotational modes revisited;Geophysical & Astrophysical Fluid Dynamics;2023-05-04

4. The Earth's rotational modes revisited;2022-09-03

5. Secular changes in length of day: Effect of the mass redistribution;Astronomy & Astrophysics;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3