Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC)

Author:

Carro M. D.,Miller E. L.

Abstract

Incubation trials were carried out with the rumen simulation technique (RUSITEC) to study the effects of four forms of N on the growth of ruminal micro-organisms and the fermentation variables when an all-fibre basal diet was incubated. The basal diet consisted of 10 g neutral-detergent fibre (NDF) from grass hay plus 2 g NDF from sugarbeet pulp. N forms were isolated soyabean protein, soyabean peptides, amino acids blended to profile soyabean protein and NH3 as NH4Cl. Half of the daily N supply was infused as NH4Cl and the other half was infused as each of the four treatments described. Non-NH3 N (NAN) forms increased NDF (P = 0·006), acid-detergent fibre (P = 0·003) and cellulose (P = 0·015) disappearance after 48 h incubation, CO2 (P < 0·001), CH4 (P = 0·002) and total volatile fatty acids production (P < 0·001), as well as the molar percentages of isobutyrate, isovalerate and valerate, which reflected the fermentation of amino acid C skeletons. NAN treatments also increased microbial N flow (P < 0·001) compared with NH3, with peptides and protein supporting more (P = 0·036) than amino acids. The proportion of microbial N derived from NH3 decreased successively (P < 0·05) with NH3 > amino acids > peptides > protein treatments, indicating preferential uptake of peptides without passage through the NH3 pool. Microbial efficiency (g microbial N/kg organic matter apparent disappearance) was greater (P = 0·002) for the NAN forms than for the NH3 treatment, with peptides and protein treatments supporting higher (P = 0·009) values than amino acid treatment. These results indicate that N forms other than NH3 are required for optimal fibre digestion and microbial growth.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3