Hepatic expression of sodium-dependent vitamin C transporters: ontogeny, subtissular distribution and effect of chronic liver diseases

Author:

Macias Rocio I. R.,Hierro Carlos,Cuesta de Juan Susana,Jimenez Felipe,Gonzalez-San Martin Francisco,Marin Jose J. G.

Abstract

Ascorbic acid uptake is a key step in determining the overall bioactivity of this vitamin. Expression of Na-dependent vitamin C transporters (SVCT; SLC23A1 and SLC23A2) during long-term oxidative stress occurring in several chronic liver diseases may determine the antioxidant defence in this organ. In patients with hepatocellular cholestasis, primary biliary cirrhosis, haemochromatosis and non-alcoholic steatohepatitis, using real-time RT-PCR, an enhanced hepatic expression of both SLC23A1 and SLC23A2, but not other organic anions transporters, such as OATP1A2, OATP1B1 and OATP1B3, was found. To further investigate these findings, we used secondary biliary cirrhosis induced in rats by long-term biliary obstruction as a model of chronic liver disease accompanied by oxidative stress because of bile acid accumulation. In control rat liver, expression ofSlc23a1was low at birth, increased progressively up to adulthood and decreased in senescence, whereas expression ofSlc23a2did not change significantly after birth. In 8-week-old rats, immunohistochemistry and confocal microscopy studies revealed the expression in hepatocytes and bile duct cells of mainly Slc23a1, whereas both Slc23a1 and Slc23a2 were expressed in endothelial, stellate and Kupffer cells. In adult rats, when obstructive cholestasis was maintained for 8 weeks, a significant up-regulation of Slc23a2 accompanied by a down-regulation of Slc23a1 was found. In sum, there is a selective cell-type distribution of SVCT in the liver tissue, which, in addition to differential control in the expression of both isoforms, may play a role in the ability of different liver cell types to take up vitamin C under physiological and pathological conditions.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3