Integrated one-dimensional dynamic analysis methodology for space launch vehicles reflecting liquid components

Author:

Kim J.B.,Sim J.S.,Lee S.G.,Shin S.J.,Park J.H.,Kim Y.

Abstract

ABSTRACTIn this paper, structural modelling and dynamic analysis methods reflecting the characteristics of a liquid propellant were developed for a pogo analysis. The pogo phenomenon results from the complex interaction between the vehicle structural vibration in the longitudinal direction and the propulsion system. Thus, for an accurate vibration analysis of a liquid propellant launch vehicle, both the consumption of the liquid propellant and the change in the stiffness reflecting the nonlinear hydroelastic effect were simultaneously considered. A complete vehicle structure, including the liquid propellant tanks, was analytically modelled while focusing on pogo. In addition, a feasible liquid propellant tank modelling method was established to obtain an one-dimensional complete vehicle model. With these methods, comparative studies of the hydroelastic effect were conducted. Evaluations of the dynamic analysis of a reference vehicle were also conducted during the first burning stage. The numerical results obtained with the present orthotropic model and the dynamic analysis method were found to be in good agreement with the natural vibration characteristics according to previous analyses and experiments. Additionally, the reference vehicle showed the estimated occurrence of pogo in the first structural mode when compared with the frequencies of the propellant feeding system. In conclusion, the present structural modelling and modal analysis procedures can be effectively used to analyse dynamic characteristics of liquid propellant launch vehicles. These techniques are also capable of identifying the occurrence of pogo and providing design criteria related to pogo instability.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference31 articles.

1. Wood J.D. Survey on missile structural dynamics, EM 11-11, Vol. 1, TRW Space Technology Laboratories, 1961.

2. Ujino T. , Shimura T. , Kohsetsu Y. and Niitsu M. POGO prevention of H-2 launch vehicle, AIAA 35th Structural Dynamics and materials Conference, AIAA-94-1624-CP, 1994, Hilton Head, South Carolina, US.

3. Anonymous. NASA space vehicle design criteria – structural vibration prediction, NASA SP-8050, 1970.

4. Abramson H.N. The dynamic behaviour of liquids in moving containers, NASA SP-106, 1966.

5. Glaser R.F. Analysis of axisymmetric vibration of a partially liquid-filled elastic sphere by the method of Green's function, NASA TN D-7472, 1973.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pressure mode analysis of nonuniform cross-sectional pipes and preliminary evaluation of a pogo suppressor;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2019-01-08

2. Longitudinal Characteristics Analysis of a Space Launch Vehicle using One and Three-Dimensional Combined Modeling for Pogo Prediction;2018 AIAA SPACE and Astronautics Forum and Exposition;2018-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3