Principal component density estimation for scenario generation using normalizing flows

Author:

Cramer EikeORCID,Mitsos AlexanderORCID,Tempone RaúlORCID,Dahmen ManuelORCID

Abstract

Abstract Neural networks-based learning of the distribution of non-dispatchable renewable electricity generation from sources, such as photovoltaics (PV) and wind as well as load demands, has recently gained attention. Normalizing flow density models are particularly well suited for this task due to the training through direct log-likelihood maximization. However, research from the field of image generation has shown that standard normalizing flows can only learn smeared-out versions of manifold distributions. Previous works on normalizing flow-based scenario generation do not address this issue, and the smeared-out distributions result in the sampling of noisy time series. In this paper, we exploit the isometry of the principal component analysis (PCA), which sets up the normalizing flow in a lower-dimensional space while maintaining the direct and computationally efficient likelihood maximization. We train the resulting principal component flow (PCF) on data of PV and wind power generation as well as load demand in Germany in the years 2013–2015. The results of this investigation show that the PCF preserves critical features of the original distributions, such as the probability density and frequency behavior of the time series. The application of the PCF is, however, not limited to renewable power generation but rather extends to any dataset, time series, or otherwise, which can be efficiently reduced using PCA.

Funder

Helmholtz-Gemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3