Abstract
Abstract
A neural network framework is used to design a new Ni-based superalloy that surpasses the performance of IN718 for laser-blown-powder directed-energy-deposition repair applications. The framework utilized a large database comprising physical and thermodynamic properties for different alloy compositions to learn both composition to property and also property to property relationships. The alloy composition space was based on IN718, although, W was additionally included and the limiting Al and Co content were allowed to increase compared standard IN718, thereby allowing the alloy to approach the composition of ATI 718Plus® (718Plus). The composition with the highest probability of satisfying target properties including phase stability, solidification strain, and tensile strength was identified. The alloy was fabricated, and the properties were experimentally investigated. The testing confirms that this alloy offers advantages for additive repair applications over standard IN718.
Funder
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献