A characterization of lambda-terms transforming numerals

Author:

PARYS PAWEŁ

Abstract

AbstractIt is well known that simply typed λ-terms can be used to represent numbers, as well as some other data types. We show that λ-terms of each fixed (but possibly very complicated) type can be described by a finite piece of information (a set of appropriately defined intersection types) and by a vector of natural numbers. On the one hand, the description is compositional: having only the finite piece of information for two closed λ-terms M and N, we can determine its counterpart for MN, and a linear transformation that applied to the vectors of numbers for M and N gives us the vector for MN. On the other hand, when a λ-term represents a natural number, then this number is approximated by a number in the vector corresponding to this λ-term. As a consequence, we prove that in a λ-term of a fixed type, we can store only a fixed number of natural numbers, in such a way that they can be extracted using λ-terms. More precisely, while representing k numbers in a closed λ-term of some type, we only require that there are k closed λ-terms M1,. . .,Mk such that Mi takes as argument the λ-term representing the k-tuple, and returns the i-th number in the tuple (we do not require that, using λ-calculus, one can construct the representation of the k-tuple out of the k numbers in the tuple). Moreover, the same result holds when we allow that the numbers can be extracted approximately, up to some error (even when we only want to know whether a set is bounded or not). All the results remain true when we allow the Y combinator (recursion) in our λ-terms, as well as uninterpreted constants.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference9 articles.

1. Lambda Calculus with Types

2. Definierbare Funktionen imλ-Kalkül mit Typen

3. Parys P. (2014) How many numbers can a lambda-term contain? In Flops. Lecture Notes in Computer Science, Codish M. & Sumii E. (eds), vol. 8475. Springer.

4. Regular Cost Functions, Part I: Logic and Algebra over Words

5. Clairambault P. & Murawski A. S. (2013) Böhm trees as higher-order recursive schemes. In IARCS annual conference on foundations of software technology and theoretical computer science, FSTTCS 2013, December 12–14, 2013, Guwahati, India. Seth A. & Vishnoi N. K. (eds), LIPIcs, vol. 24. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intersection Types for Unboundedness Problems;Electronic Proceedings in Theoretical Computer Science;2019-04-23

2. Intersection Types and Counting;Electronic Proceedings in Theoretical Computer Science;2017-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3