Elaborating dependent (co)pattern matching: No pattern left behind

Author:

COCKX JESPERORCID,ABEL ANDREAS

Abstract

Abstract In a dependently typed language, we can guarantee correctness of our programmes by providing formal proofs. To check them, the typechecker elaborates these programs and proofs into a low-level core language. However, this core language is by nature hard to understand by mere humans, so how can we know we proved the right thing? This question occurs in particular for dependent copattern matching, a powerful language construct for writing programmes and proofs by dependent case analysis and mixed induction/coinduction. A definition by copattern matching consists of a list of clauses that are elaborated to a case tree, which can be further translated to primitive eliminators. In previous work this second step has received a lot of attention, but the first step has been mostly ignored so far. We present an algorithm elaborating definitions by dependent copattern matching to a core language with inductive data types, coinductive record types, an identity type, and constants defined by well-typed case trees. To ensure correctness, we prove that elaboration preserves the first-match semantics of the user clauses. Based on this theoretical work, we reimplement the algorithm used by Agda to check left-hand sides of definitions by pattern matching. The new implementation is at the same time more general and less complex, and fixes a number of bugs and usability issues with the old version. Thus, we take another step towards the formally verified implementation of a practical dependently typed language.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference38 articles.

1. Zeilberger, N. (2009) The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Carnegie Mellon University. Available at: http://software.imdea.org/~noam.zeilberger/thesis.pdf

2. Thibodeau, D. , Cave, A. & Pientka, B. (2016) Indexed codata types. In Garrigue et al. (2016), pp. 351–363. Available at: http://doi.acm.org/10.1145/2951913.2951929

3. Sozeau, M. (2010) Equations: A dependent pattern-matching compiler. In Interactive Theorem Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11–14, 2010. Proceedings, Kaufmann, M. & Paulson, L. C. (eds), vol. 6172. Lecture Notes in Computer Science. Springer, pp. 419–434. Available at: https://doi.org/10.1007/978-3-642-14052-5_29

4. How to Believe a Machine-Checked Proof

5. Norell, U. (2007) Towards a practical programming language based on dependent type theory. PhD thesis, Chalmers University of Technology.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Datatype-generic programming meets elaborator reflection;Proceedings of the ACM on Programming Languages;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3