The impact of higher-order state and control effects on local relational reasoning

Author:

DREYER DEREK,NEIS GEORG,BIRKEDAL LARS

Abstract

AbstractReasoning about program equivalence is one of the oldest problems in semantics. In recent years, useful techniques have been developed, based on bisimulations and logical relations, for reasoning about equivalence in the setting of increasingly realistic languages—languages nearly as complex as ML or Haskell. Much of the recent work in this direction has considered the interesting representation independence principles enabled by the use of local state, but it is also important to understand the principles that powerful features like higher-order state and control effects disable. This latter topic has been broached extensively within the framework of game semantics, resulting in what Abramsky dubbed the “semantic cube”: fully abstract game-semantic characterizations of various axes in the design space of ML-like languages. But when it comes to reasoning about many actual examples, game semantics does not yet supply a useful technique for proving equivalences.In this paper, we marry the aspirations of the semantic cube to the powerful proof method of step-indexed Kripke logical relations. Building on recent work of Ahmed et al. (2009), we define the first fully abstract logical relation for an ML-like language with recursive types, abstract types, general references and call/cc. We then show how, under orthogonal restrictions to the expressive power of our language—namely, the restriction to first-order state and/or the removal of call/cc—we can enhance the proving power of our possible-worlds model in correspondingly orthogonal ways, and we demonstrate this proving power on a range of interesting examples. Central to our story is the use of state transition systems to model the way in which properties of local state evolve over time.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GADTs are not (Even partial) functors;Mathematical Structures in Computer Science;2024-08-27

2. A Logical Approach to Type Soundness;Journal of the ACM;2024-07-10

3. Contextual Equivalence for State and Control via Nested Data;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

4. Bialgebraic Reasoning on Higher-order Program Equivalence;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

5. Asynchronous Probabilistic Couplings in Higher-Order Separation Logic;Proceedings of the ACM on Programming Languages;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3