Seasonal forecasting of green water components and crop yield of summer crops in Serbia and Austria

Author:

Lalić B.,Firanj Sremac A.,Eitzinger J.,Stričević R.,Thaler S.,Maksimović I.,Daničić M.,Perišić D.,Dekić Lj.

Abstract

AbstractA probabilistic crop forecast based on ensembles of crop model output estimates, presented here, offers an ensemble of possible realizations and probabilistic forecasts of green water components, crop yield and green water footprints (WFs) on seasonal scales for selected summer crops. The present paper presents results of an ongoing study related to the application of ensemble forecasting concepts in crop production. Seasonal forecasting of crop water use indicators (evapotranspiration (ET), water productivity, green WF) and yield of rainfed summer crops (maize, spring barley and sunflower), was performed using the AquaCrop model and ensemble weather forecast, provided by The European Centre for Medium-range Weather Forecast. The ensemble of estimates obtained was tested with observation-based simulations to assess the ability of seasonal weather forecasts to ensure that accuracy of the simulation results was the same as for those obtained using observed weather data. Best results are obtained for ensemble forecast for yield, ET, water productivity and green WF for sunflower in Novi Sad (Serbia) and maize in Groß-Enzersdorf (Austria) – average root mean square error (2006–2014) was <10% of observation-based values of selected variables. For variables yielding a probability distribution, capacity to reflect the distribution from which their outcomes will be drawn was tested using an Ignorance score. Average Ignorance score, for all locations, crops and variables varied from 1.49 (spring barley ET in Groß-Enzersdorf) to 3.35 (sunflower water productivity in Groß-Enzersdorf).

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3