Yield, dry matter and water productivity simulation for surface and subsurface drip-irrigated bell pepper using the SALTMED model

Author:

Yazar A.,İnce Kaya Ç.,Çolak Y. BozkurtORCID,Tekin S.ORCID,Alghory A.ORCID

Abstract

AbstractSALTMED model performance was evaluated by comparing simulated and observed soil water content, dry matter (DM) yield, yield and water productivity (WP) data of field-grown bell pepper (Capsicum annuum L.) under Mediterranean climatic conditions irrigated with surface and subsurface drip systems. Simulation data were obtained from field experiments performed in 2016 and 2017. Treatments were full irrigation (I100), conventional deficit irrigation at 75 and 50% actual crop evapotranspiration (ETa; I75 and I50), regulated-deficit irrigation (RDI) and partial root-zone drying (PRD) at 50% ETa using surface (SfDI) and subsurface drip systems (SbDI) on a clay-loam soil, in a split-plot with four replications. Results showed that 56 and 29 mm less irrigation water was applied to SdDI100 in 2016 and 2017, respectively, than SfDI100; RDI used 27 and 77 mm less irrigation water than SfDI100 in experimental years, respectively. SbDI and SfDI performed similarly for bell pepper yield, DM and WP. However, the effect of irrigation treatments on yield, DM and WP was significant. I100 showed the highest yield (74.9 and 71.1 t/ha in 2016 and 2017, respectively), followed by RDI in 2016; I100, RDI and I75 produced greater yield than other treatments in 2017. PRD50 and I50 produced the least yield (49.8 and 45.9 t/ha in 2016 and 2017, respectively). SbPRD50 and SbI50 had the greatest WP value under SbDI in the experimental years. Results showed that the SALTMED model simulated yield, DM, soil water content and WP reasonably well (R2 = 0.95, 0.97, 0.98 and 0.74, respectively).

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3